

Demo: Liquid Identification via Vision-Guided mmWave Imaging and LLM Reasoning #10

(for Downstream Tasks)

Bo Liang, Jingzhe Peng, Xingyuming Liu, Chen Gong, Chenren Xu

WAIS Lab, Peking University

Motivation

- Most robots can distinguish different liquids only based on appearance, which leads to failures in many daily tasks.
- ➤ Wireless liquid sensing—specifically, inferring physical properties of liquids through their interaction with electromagnetic waves—can enable robots to better understand and interact with liquids.

Key Insights

Distribution Image

Imaging for Liquid Sensing

New Features!

➤ Location-independent➤ Multi-cup Sensing➤ Small-volume Compatible➤ Task-adaptive via Prompts

SAR-based mmWave Imaging

The system first uses RGB-D input to localize regions of interest, reducing scanning time and **eliminating the need for fixed location setup** required in prior methods. mmWave imaging then captures high-resolution signals, enabling accurate sensing across multiple containers—even with very small liquid volumes.

LLM-based Reasoning

Large Language Models (LLMs) can leverage task descriptions and visual context to reframe complex n-liquid classification into simplified tasks—such as binary decisions—enhancing both robustness and accuracy. Their outputs are also naturally interpretable for both humans and robots, facilitating seamless collaboration.